Prerequisite: None

Rationale:

Prerequisite: After discussing with the instructors and advisors, it is concluded that a prerequisite is no longer needed because with today's social and educational structure so dependent on computer literacy, the exit goals needed out of the prerequisite are virtually taught in $\mathrm{K}-12$.

San Bernardino Valley College
 Course Outline for ELECTR 265
 DIGITAL LOGIC DESIGN

I. CATALOG DESCRIPTION:

Department: Electricity/Electronics
ELECTR 265: Digital Logic Design
3 hours lecture, 3 hours laboratory $=4$ Units
Catalog Description: Provides technicians, engineers, and programmers with a working knowledge of digital logic circuits and their application to logic circuits of computers. Includes theory and experience necessary to understand and analyze digital circuits' logic and systems.
Schedule Description: Provides technicians, engineers, and programmers with a working knowledge of digital logic circuits and their application to logic circuits of computers.
Prerequisite/corequisite: None
II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One

III. EXPECTED OUTCOMES FOR STUDENTS:

Upon completion of this course, students will be able to:
A. Compare and convert number systems from decimal to binary to hexadecimal.
B. Recognize the schematics and use logic gates to arrive at a desired conclusion with any input.
C. Analyze logic circuits by using the sum of products method and Karnaugh maps.
D. Explain the use of flip-flops and registers as applied to logic circuits.
E. Construct various logic circuits and modify circuits to specifications.
F. Explain the operation of various trigger circuits.
G. Analyze waveforms at various points in logic circuits.
H. Troubleshoot digital circuits.
IV. CONTENT:
A. Number Systems

1. Binary number system and number system conversion
2. Octal numbering system
3. Decimal numbering system
4. Hexadecimal numbering system
5. Binary coded decimal (BCD) system
6. Binary addition
7. Binary subtraction
8. Binary 1's complement subtraction
9. Binary 2's complement subtraction
10. Signed 2's complement numbers
B. Logic Gates
11. Gates
12. Inverters
13. OR gates, AND gates, NAND gates, NOR gates
14. Data control enable/inhibit
15. AND gate enable/inhibit
16. OR gate enable/inhibit
17. NAND gate enable/inhibit
18. NOR gate enable/inhibit
19. Summary gate enable/inhibit
20. NAND as an inverter
21. NOR as an inverter
22. Expanding an AND gate
23. Expanding a NAND gate
24. Expanding an OR gate
25. Expanding a NOR gate
C. Waveforms and Boolean Algebra
26. Waveform analysis
27. Delayed clock and shift-counter waveforms
28. Combinational logic
29. Boolean theorems
30. DeMorgan's theorems
31. Designing logic circuits
32. AND-OR-INVERT gates
33. Reducing Boolean expressions with Karnaugh
D. Exclusive-OR Gates
34. Exclusive-OR
35. Enable/inhibit
36. Waveform analysis
37. Exclusive-NOR
38. Exclusive-OR/NOR
39. Parity
40. Even-parity generator
41. Even/odd-parity generator
42. Parity checker
43. Nine-bit parity generator/checker
44. Comparator
E. Adders
45. Half adder
46. Full adder
47. One's complement adder/subtractor
48. Two's complement adder/subtractor
49. Binary-coded-decimal addition
50. Binary-coded-decimal adder
F. Specifications and Open-Collector Gates
51. TTL subfamilies
52. TTL electrical characteristics
53. TTL supply currents
54. TTL switching characteristics
55. TTL open-collector gates
56. Open-collector applications
57. CMOS
58. CMOS subfamilies
59. CMOS specifications
60. Interfacing TTL to CMOS
61. Emitter coupled logic (ECL)
62. Interfacing ECL to other logic families
63. Surface mount technology
G. Flip-Flops
64. Introduction to flip-flops
65. Crossed NAND set-reset flip-flops
66. Crossed NOR set-reset flip-flops
67. Comparisons
68. Using a set-reset flip-flop as a debounce circuit
69. The gated set-reset flip-flop
70. The transparent D flip-flop
71. The master-slave D flip-flop
72. The pulse edge-triggered D flip-flop
H. Master-Slave D and JK Flip-Flops
73. Toggling a master-slave D flip-flop
74. The JK flip-flop
75. The nonoverlapping clock
76. The shift counter
77. Typical JK ICs
I. Shift Registers
78. Shift register constructed from JK flip-flops
79. Parallel and serial data
80. Parallel-in serial-out
81. Serial data transmission formats
82. IC shift registers
83. Serial data standards
84. The ASCII code
J. Schmitt-Trigger Inputs and Clocks
85. The Schmitt-trigger input
86. Using a Schmitt-trigger to square-up an irregular wave
87. A Schmitt-trigger clock
88. The 555 timer used as a clock
89. Crystal oscillators
K. Digital-to-Analog and Analog-to-Digital Conversions
90. Resistor networks for digital-to-analog conversion
91. The TTL digital-to-analog converter
92. Analog-to-digital conversion using voltage conversion
93. The count-up and compare analog-to-digital converter
L. Decoders, Multiplexers, Demultiplexers and Displays
94. Decoders
95. Demultiplexers
96. Multiplexers
97. Using a multiplexer to reproduce a desired truth table
98. Multiplexer and demultiplexer
99. The 8-trace scope multiplexer
100. The Light Emitting Diode (LED)
101. The 7 -segment display
102. The liquid crystal display

V. METHODS OF INSTRUCTION:

Methods of instruction will vary from instructor to instructor but may include:
A. Lecture
B. Discussion between teacher and students plus discussion between individual students
VI. TYPICAL ASSIGNMENTS:

Typical assignments will vary from instructor to instructor but may include:
A. Use a calculator to convert between various numbering systems.
B. Complete variational analyses of a logic diagram circuit.
C. Written homework assigned each week from the questions and problems in each chapter.
Typical Questions:

1. Describe the principles of triggering networks.
2. Draw the truth table for a transparent D flip-flop.
VII. EVALUATION(S):
A. Methods of evaluation will vary from instructor to instructor but may include:
3. Quizzes
4. End-of-chapter tests
5. Practical labs with written conclusions graded on content and spelling
6. Final exam

Typical Questions:
a. Write the binary numbers from 100 to 1000 .
b. Draw the pinout of a CMOS comparator.
B. Frequency of evaluation will vary from instructor to instructor but may include:

1. Periodic feedback based on chapter quizzes
2. Eight (8) chapter exams
3. Eight (8) practical labs
4. One (1) comprehensive final exam
VIII. TYPICAL TEXT(S):

Bignell, J. W. \& Donovan, R. L. Digital Electronics ($3^{\text {rd }}$ ed.). ITP Delmar: New York, 1992.
IX. OTHER SUPPLIES REQUIRED OF STUDENTS:

Scientific calculator, scantron answer forms (882 or 882E)

